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Disjoining pressure and thinning transitions in smectic-A liquid crystal films

F. Picano, P. Oswald, and E. Kats*
Laboratoire de Physique de l’Ecole Normale Supe´rieure de Lyon,† 46 Allée d’Italie, 69364 Lyon Cedex 07, France
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The contact angle between a free standing film of a smectic-A liquid crystal and its meniscus is different
from zero. It increases independently of the meniscus size when the film thickness decreases. This angle
provides a very precise measurement of the film tension and of the interactions between the two free surfaces.
This interaction is attractive and can be qualitatively explained within the framework of the de Gennes theory
of the presmectic state. According to this model, the attraction is caused by an increase of the smectic order
parameter at the free surface. This phenomenon also explains the metastability of very thin smectic films above
the bulk smectic-A–nematic phase transition. The temperaturesT(N) of spontaneous thinning fromN layers to
N21 layers is measured in the smectic phase of the liquid crystal 8CB~octylcyanobiphenyl!.
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I. INTRODUCTION

Smectic-A liquid crystals can form stable free standin
films, similar to soap films, when they are stretched on
solid frame. Friedel@1# discovered this property in 1922 an
used it as an argument in favor of the layered structure of
smectic phase in thermotropic liquid crystals. This cruc
point, although quite intuitive, needs some explanatio
which we give in this paper.

The interest for free smectic films was renewed in
1970s with many beautiful works on their structure and th
mechanical or thermodynamical properties. Many of
most important papers in these fields can be found in
book by Pershan@2#. All these works focused on the prope
ties of the film itself and evade the problem of the menis
that forms between the film and its support. In fact the m
niscus acts as a reservoir with which the film can excha
matter. In this respect, the meniscus plays the important
of fixing the chemical potential~or the pressure! in the film.
Pieranski was the first to draw attention to this problem@3# in
1993 but it is only recently that a theory of the meniscus
been proposed@4,5#. According to this model, two region
must be distinguished@5#: one with large density of disloca
tions in which focal domains and oily streaks form and a
other, with medium density of dislocations, where disloc
tions remain elementary@5#, i.e., of Burgers vectorb5d
whered is the layer thickness. The former corresponds to
thick parts of the meniscus whereas the latter is next to
film and has a circular profile of radius of curvatureR. In
thick films ~more than 50 layers!, the circular profile matches
tangentially the free surface of the film while its radius
curvature fixes the pressure inside both the meniscus an
film via the Laplace law:

DP5Pair2Psmectic5
g

R
~1!
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with g the air–smectic surface free energy. In this limit, t
pressure difference across the free surface in the film
equilibrated by the compression of the smectic layers. T
pressure difference also changes the film tensiont which
reads

t52g1DPH, ~2!

whereH is the film thickness. This dependence has been
observed experimentally by Pieranskiet al. @3#.

In this paper, we show first experimentally that in th
films, the meniscus no longer matches the film tangentia
but makes an apparent ‘‘contact’’ angleumÞ0 which in-
creases when the film thickness decreases~Sec. II!. The ori-
gin of this angle and its consequences on the film tension
analyzed from a mechanical point of view in the next se
tion: in particular, we show that this angle is associated w
some disjoining pressure in the film~Sec. III!. The origin of
this ‘‘extra’’ pressure is discussed in the framework of the
Gennes theory for presmectic films@6,7# ~Sec. IV!. We then
describe the successive thinning transitions of a smectA
film that occur when the film is heated aboveTNA ~the bulk
transition temperature to the nematic phase! ~Sec. V!. Fi-
nally, we discuss the role of boundary conditions and
scaling laws for the thinning transition temperatures~Sec.
VI !.

II. EXPERIMENTAL EVIDENCE OF A CONTACT ANGLE

The liquid crystal chosen is 8CB ~4-n-
octylcyanobiphenyl!. It is smectic-A at room temperature an
has a quasi-second-order phase transition to the nem
phase at 33.4 °C~for a discussion about the order of th
transition see Ref.@8#!.

The films are stretched on a circular frame~5 mm in di-
ameter and 0.1 mm thick!. The frame is placed in an ove
whose temperature is controlled within 0.05 °C. The film
observed with a video camera via reflected light microsco
Its thickness is obtained by measuring the reflectivity a
function of the light wavelength. The microscope is equipp
with a monochromator and an optical chopper, and the int
sity of the reflected light is measured by a photodiode c
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nected to a lock-in amplifier. In this way, the numberN of
layers can be exactly determined. The profile of the menis
that forms along the sides of the frame is determined
observing in monochromatic light the fringes that form
equilibrium ~note that several hours are necessary to eq
brate the film and its meniscus!. More precisely, we measur
the positions of the maxima and of the minima, knowing th
the thickness changes ofl/4n ~n is the smectic refraction
index! between a bright and a dark line. An example is giv
in Fig. 1. The film is six layers thick and the meniscus profi
is circular @4,5# of radius of curvatureR53.3 mm. The new
observation is that the meniscus no longer matches the
tangentially, as we have observed previously for thick film
but rather makes an apparent contact angleum different from

FIG. 1. ~a! Fringes observed in the meniscus in monochroma
light; ~b! intensity profile;~c! meniscus profile and its circular fi
~solid line!. Note that the contact angleum is different from zero.

FIG. 2. Angleum
2 as a function of the radius of curvature of th

meniscusR (N56, T528.7 °C).
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zero. We emphasize thatum is the macroscopic angle be
tween the free surface of the film and the circle that fits
meniscus ‘‘far’’ from the intersection point~see also Fig. 5
of the next section!. We performed systematic measureme
of this angle as a function of radius of curvature, the fi
thickness and the temperature. Figure 2 shows thatum is
independent ofR, and hence ofDP. By contrast,um in-
creases when the film thickness decreases~Fig. 3!. Below
TNA , it also increases when the temperature increa
whereas it passes through a maximum aboveTNA ~Fig. 4!.
We emphasize that it was possible to measureum for tem-
peratures higher thanTNA . This means that films can b
overheated without breaking, a phenomenon that will be d
cussed in detail in Sec. V. In the next section, we analyze
origin of this angle and recall the concept of disjoining pre
sure@9#.

III. MECHANICAL EQUILIBRIUM AND DISJOINING
PRESSURE

Let us consider the smectic phase confined between
surfaces separated by a distanceh ~Fig. 5!. There can occur

c

FIG. 3. Angleum
2 as a function of the number of layersN in the

film at T528.7 °C. The solid line has been calculated from t
model @Eq. ~26!# by takingaojocs

2/g57.431024 K21, A510kBT
andjo50.8 nm.

FIG. 4. Angleum
2 as a function of the temperature for differe

values ofN.
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DISJOINING PRESSURE AND THINNING . . . PHYSICAL REVIEW E63 021705
an excess of free energyf (h) ~per unit surface! because of
the presence of the two surfaces and of the finite thickneh
of the sample. By convention, we choosef (`)50 when the
smectic is not stressed. The disjoining pressure is define
be

Pd52
d f

dh
. ~3!

The origin of f (h) ~or Pd) is discussed in the next sectio
To derive the equations for mechanical equilibrium, let
first consider the total energy of the system film1meniscus.
It reads@x is the axis coordinate~see Fig. 5!#:

F@h~x!#5E dxF2gA11S d~h/2!

dx D 2

1DPh~x!1 f @h~x!#

2E@h~x!#
1

d

dh

dxG . ~4!

The first term corresponds to the surface energy and the
ond one to the work of the pressure~at equilibrium the pres-
sure is the same in the film and in the meniscus! with DP
5Pair2Psmectic. The third termf (h) is the excess of free
energy due to the finite thickness of the system while the
one corresponds to the energy of the dislocations in the
niscus„E@h(x)# is the energy of an elementary dislocationd
is the layer thickness and2(1/d)(dh/dx) is the density of
dislocations…. Minimization with respect toh gives

DP1
d f

dh
2g

@d2~h/2!/dx2#

@11„d~h/2!/dx…2#3/250. ~5!

This equation can be written in the equivalent form

DP2Pd2g/R50, ~6!

FIG. 5. Schematic representation of the film and of the me
cus. Angleum is just an ‘‘extrapolated’’ macroscopic angle. Indee
there is no angular discontinuity at small scale between the film
its meniscus. It turns out that the matching region is too small to
observable in the microscope, which gives the appearance o
angular matching.
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wherePd is the disjoining pressure defined in~3! andR the
radius of curvature at the free surface. This general equa
applies both to the film and to the meniscus. Thus

DP5Pd in the film ~R5`! ~7!

and

DP5g/R far in the meniscus wheref ~h!'0. ~8!

Equation ~7! describes the mechanical equilibrium in th
film. Equation ~8! is equivalent to the Laplace law for a
ordinary liquid @4,5#. We emphasize that this law doe
strictly apply in the thick region of the meniscus.

To determine the macroscopic matching angleum be-
tween the circular profile given by~8! and the film surface,
we integrate Eq.~5!. It gives immediately

DPh1 f @h~x!#12g cosu5c, ~9!

where c is a constant of integration andu the local angle
between the free surface and thex axis @ tanu5d(h/2)/dx#.
The angleum measured experimentally is obtained by e
trapolating at smallh the circular profile given by the
Laplace law~8! and by taking the corresponding value ofu
at h5H whereH is the film thickness. This procedure give

2g~cosum21!5 f ~H !. ~10!

Note that this equation only makes sense whenf (H),0
@with the convention thatf (`)50 when the smectic is no
stressed#. Note also that the mechanical equilibriumDP
5Pd in the film givesd f /dh,0 ~because experimentally
DP.0) and that the film stability requires a positive com
pressibility, i.e.,d2f /dh2.0.

For completeness, we give the expression of the film t
sion t. This is the force per unit length you must apply
maintain the film is equilibrium~Fig. 5!. It is given by

t52g1DPH1 f ~H !. ~11!

This equation generalizes Eq.~2! and can be easily found b
calculating the force that the meniscus exerts on the left-h
wall ~Fig. 5!. This calculation gives

t52g cosuo1DPho . ~12!

Becauseho5H12R(cosum2cosuo) and DP5g/R @Eq.
~8!# we obtain

t5DPH12g cosum ~13!

which is equivalent to Eq.~11! according to Eq.~10!. Equa-
tion ~13! shows that measuringum is a very precise method
to find the variation of the film tension caused by the int
actions between the free surfaces. Asum is experimentally
very small we can take

2~cosum21!52um
2

in the following.
We discuss now the origin off (h).
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IV. ORIGIN OF THE DISJOINING PRESSURE

A. Smectic-A elasticity

There is a first contribution tof (h) that comes from the
smectic elasticity only and is independent of the interacti
between the two free surfaces. Indeed, the layers are stre
because the pressure in the film is less than the atmosp
pressure (DP.0). If the film is thick enough,f (h) reduces
to the compression energy of the layers

f e~h!5
1

2
BNdS h2Nd

Nd D 2

, ~14!

where N is the number of layers of the film andB is the
compressibility modulus of the layers belowTNA . In this
limit, the mechanical equilibrium of the film reads

DP5Pd52S d fe~h!

dh D
h5H

52B
H2Nd

Nd
. ~15!

In this form, the disjoining pressure is identified to2s,
wheres is the usual stress tensor@4,5# and the film tension
reads

t52g1DPH1 f e~H !52g1DPH1
DP2

2B
H. ~16!

This formula is a generalization of Eq.~2! which takes into
account the compressibility energy of the layers. Nevert
less, this term is always negligible with respect to the fi
correction inDPH becauseDP!B in usual experiments
IndeedDP<23103 erg/cm3 @4,5# whereasB.107 erg/cm3,
even very close toTNA @10#.

As a conclusion, the tension of thick films~in which in-
teractions between free surfaces may be neglected! is given
by Eq. ~2! to an excellent approximation. In these films, t
matching angleum between the meniscus and the film mu
also be very close to zero@according to Eq.~10!#. This is
indeed observed experimentally@4,5#.

We now discuss the case of thin films (N,20) in which
um is different from 0. In this case, van der Waals intera
tions as well as the variations near the free surface of
amplitude of the smectic order parameter must also be ta
into account.

B. Interaction between the two free surfaces

When the two free surfaces are close enough, their in
action can no longer be neglected. The most common is
van der Waals interaction that gives a power law of type

f vdw~h!52
A

12ph2 . ~17!

ConstantA is known as the Hamaker constant and is ty
cally of the order of 10kBT @11#. This interaction arises from
the interplay of electromagnetic field fluctuations wi
boundary conditions. In liquid crystals, analogous pseu
van der Waals interactions also arise from orientationa
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positional fluctuations@12# but these corrections are usual
small. In the following,A includes van der Waals1pseudo-
van der Waals interactions.

This law gives

um
2 5

A

12pgh2 . ~18!

This equation predicts thatum
2 decreases as 1/N2 at small

thickness, which disagrees with our observations. Furth
more, this law cannot explain the strong dependence
um on the temperature~Fig. 4! and gives too small value
of um

2 ~with A'10kBT, h590 Å, we calculateum
2 55

31024 rad2, to be compared with the experimental value
31023 rad2). Our conclusion is that van der Waals intera
tions alone cannot explain our observations.

Another phenomenon that gives an attractive interact
is the increase of the amplitude of the smectic order par
eter at the free surfaces. Such an increase occurs when
molecules prefer a homeotropic orientation at the free s
face, which is usually observed experimentally. This mod
which is a generalization of the de Gennes model for pr
mectic films aboveTNA @6,7#, has already been used succe
fully by Richetti et al. @13# for explaining the attractive back
ground that is observed at small distances in a force mac
with a lyotropic lamellar phase.

Let C be the amplitude of the order parameter in t
smectic-A phase andf its phase~which is related to the laye
displacementu by the relationf52pu/d). The bulk Lan-
dau energy per unit volume reads@14#

f L5 1
2 aC21 1

4 bC41¯ ~19!

with a5ao(T2TNA). Parametersao andb are two positive
constants.

In an infinite medium, the order parameter that minimiz
~19! is equal to

Cb5A2a

b
. ~20!

In a film of thicknessh, the order parameter shifts a littl
from its valueCb because of the presence of the two fr
surfaces. In this case, a term inugrad(Ceif)u2 must also be
introduced to describe the spatial variation of the order
rameter. Settingc5C2Cb , it gives within a constant:

f ~h!5E
2h/2

h/2 F2ac21¯1
1

2
LS dc

dzD 2

1
1

2
LC2S df

dzD 2Gdz.

~21a!

For simplicity, we shall assume in the following thatc is
very small and we will replaceC2 by Cb

2 in the previous
equation. In this limit, the energy becomes

f ~h!5E
2h/2

h/2 F2ac21¯1
1

2
LS dc

dzD 2

1
1

2
LCb

2S df

dzD 2Gdz

~21b!
5-4
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DISJOINING PRESSURE AND THINNING . . . PHYSICAL REVIEW E63 021705
or, equivalently, by introducing the layer displacement a
the bulk elastic modulusB54p2LCb

2/d2 ~supposed thick-
ness invariant!:

f ~h!5E
2h/2

h/2 F2ac21¯1
1

2
LS dc

dzD 2

1
1

2
BS du

dzD
2Gdz.

~21c!

This assumption greatly simplifies the problem becausc
andf ~or u! are now completely uncoupled.

Minimization of ~21c! with respect toc gives the differ-
ential equation

j2
d2c

dz2 52c ~22!

to which we add boundary conditions

c~2h/2!5c~h/2!5cs , ~23!

where the excess of smectic order parametercs at the free
surfaces is assumed to be constant. We define the correl
length j5AL/(2a)5jo@(TNA2T)/TNA#21/2. The solution
reads

c~z!5
cs

coshS h

&j
D coshS&z

j D . ~24!

Minimization of ~21c! with respect tou gives

B
]2u

]z2 50 ~25a!

or

B
]u

]z
5B

h2Nd

Nd
5s~h!, ~25b!

where s(h) is the stress normal to the layer that can
calculated from the condition for mechanical equilibriu
Dp5Pd52] f /]h @Eq. ~7!#.

To do this calculation we must first determine the exc
of free energy per unit surface. This gives after integrat
and by including van der Waals interactions

f ~h!5
21

&
ajcs

2F thS h

&j
D 21G1

s~h!2

2B
h2

A

12ph2

~26!

from which we calculate

DP5Pd51
1

2
acs

2F12th2S h

&j
D G2

s2

2B
2s2

A

6ph3 .

~27!

Solving this equation gives the stresss. It can be checked
that to an excellent approximation the mechanical equi
rium is only set by the layer elasticity:
02170
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By contrast the associated elastic energy is very small~be-
causeB is very large! and completely negligible in our rang
of DP ~see the discussion in the preceding section! in com-
parison to the other terms coming from the interaction
tween the free surfaces:

f ~h!5
21

&
ajcs

2F thS h

&j
D 21G2

A

12ph2 . ~29!

This formula also gives the contact angleum and the film
tensiontN as a function of the numberN of layers in the
film:

um
2 5

2ajcs
2

&g
F2thS Nd

&j
D G1

A

12pgh2 , ~30!

tN52g1DPNd1
1

&
ajcs

2F12thS Nd

&j
D G2

A

12ph2 .

~31!

Equation ~30! shows thatum does not depend onDP, in
agreement with the experiment. In addition, this equat
predicts the variation ofum

2 as a function of temperature
under the assumption thatcs is independent of the tempera
ture (cs should not have a critical behavior atTNA). Theo-
retical curvesum

2 (T) are displayed in Fig. 6 for differen
values of N by taking aojocs

2/g57.431024 K21, A
510kBT and jo50.8 nm. These values have been chos
from a best fit of the experimental data~Figs. 3 and 4! far
from the transition~solid parts of the theoretical curves!, but
the agreement is only qualitative. In particular, the predict

FIG. 6. Angle um
2 as a function of temperature calculated f

different values of the number of layersN from Eq. ~26! at T
,TNA and from Eqs. ~32! and ~10! at T.TNA by taking
aojocs

2/g57.431024 K21, A510kBT, and jo50.8 nm. The
dashed parts of the theoretical curves have no physical mea
because the correlation length is larger than the film thickness.
dotted segment is just a hand-drawn extrapolation between h
and low-temperature parts of the theoretical curves.
5-5
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that um
2 (T) passes through a maximum at a temperat

Tmax,TNA and then goes to zero atTNA is an artifact of the
model. This is due to the fact that the correlation lengthj
becomes larger than the film thickness aboveTmax. In this
limit, the finite size corrections play the most important ro
and the de Gennes model does not apply, so that the da
parts of the theoretical curves close toTNA are clearly wrong.

It turns out that the angleum can be measured in ove
heated films at temperatureT.TNA . This problem is ana-
lyzed in the next section.

V. PRESMECTIC FILMS AND THINNING TRANSITIONS
ABOVE TNA

According to the de Gennes theory for presmectic fil
@6,7#, there exists a temperatureT(N) above which a film
with N layers spontaneously thins by one layer.T(N) in-
creases whenN decreases, resulting in a succession of th
ning transitions at increasing temperature. This phenome
was first observed in fluorinated compounds@15# close to a
first order smectic-A–isotropic phase transition, but the d
Gennes theory is not directly applicable to this case@16#. It
was then observed near the first order smectic-A–nematic
phase transition of the liquid crystal 5O.6@17# and near the
second order smectic-A–nematic phase transition of liqui
crystals 6O10@18~a!# and 7AB@18~b!#. In the following, we
show that thinning transitions are easily observable in 8
too, where the phase transition is second order, provided
films are thick enough and the pressure difference is sm
We then analyze our data in the framework of t
Landau–de Gennes theory for the presmectic state. Fin
we calculate the contact angleum aboveTNA .

A. Thinning temperatures T„N…

The best way to observe thinning transitions in 8CB is
prepare thick films~100 layers typically! in contact with a
meniscus of very large radius of curvature~2 mm or more!.
The pressure is measured by observing the meniscus pr
and by using the Laplace law that still applies in the nema
phase. Once the film has been stretched, it is maintaine
33 °C ~0.4 °C belowTNA) until all the dislocations have dis
appeared. Then, the temperature is raised by successive
of 0.1 °C. After each temperature increment the film is o
served under the microscope and its thickness is measu
Two cases can arise: either the film thickness does
change during 30 mn, which means that it will not chan
anymore, and we increase the temperature again; or elem
tary dislocation loops nucleate at the edge of the film~Fig.
7!. These loops wet the meniscus, grow and merge toge
resulting in a film thickness variation by one layer. In th
case, we wait typically 3 hours at the same temperatur
order that the film and its meniscus are again stabilized.
temperature is then again increased by 0.1 °C and so on
this way, it was possible to measure the temperatureT(N) as
a function of the number of layersN ~circles in Fig. 8!. We
also performed a similar experiment by imposing a lar
increment of temperature~triangles in Fig. 8!. In this case,
the film thins by more than one layer after each increme
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On the other hand, the two curves are superimposed, w
means that the final number of layers~which is also the num-
ber of layers above which the film is unstable! is a universal
function of the temperature. Note thatDP was almost the
same~65 and 70 dyn/cm2! in these two experiments, which i
important for comparing the results even if the curveT(N)
as a function ofN does not depend strongly onDP. Indeed,
we found thatT(N) slightly decreases~by about 0.2 K! when
the pressure difference equalsDP5400 dyn/cm2. Note also
that we have no data for films thinner than 10 layers beca
above 40.4 °C the films break because of the nucleation
small droplets of isotropic liquid~this temperature coincide
with the nematic–isotropic transition temperature!.

B. Landau–de Gennes theory of the presmectic state

The same theory may be used to calculate temperat
T(N). The phase of the order parameter~which is related to

FIG. 7. Loop of dislocation nucleating atT(N) on the side of
the meniscus.

FIG. 8. Thinning temperatureT(N) as a function ofN. Circles:
DP565 dyn/cm2; triangles DP570 dyn/cm2. The solid line has
been calculated from the model@Eq. ~37!# by taking DP
570 dyn/cm2. The dashed line is the best fit to a power la
@T(N)5TNA(11aN21/n)# with n50.6960.05 anda513.
5-6
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DISJOINING PRESSURE AND THINNING . . . PHYSICAL REVIEW E63 021705
the layer displacementu! must again be taken into account
the calculations because the film is much ‘‘softer’’ abo
TNA than below, so that the compression energy~14! be-
comes more important.

A straightforward calculation, including the phasef
52pu/d of the order parameter~note that asCb50 above
TNA , C5c), gives with our notations@19#

f ~h!5ajcs
2F tanhS h

2j D1
12cos@f#N

sinh~h/j!
21G . ~32!

We define the correlation length aboveTNA as

j5AL

a
with a5ao~T2TNA! ~33!

and we set

@f#N5
2p

d
~h2Nd!, ~34!

whereh is the actual thickness of the film. As noted in Re
@7#, there are forbidden gaps, where the compressibility
negative (]2f /]h2,0) which correspond to absolutely un
stable ‘‘presmectic’’ states, and stable~or more exactly,
metastable! bands, where]2f /]h2.0. From the last condi-
tion, it follows that for admissible bands one has~by assum-
ing thath@j@d/2p):

uh2Ndu<
d

4
. ~35!

In this case, the equation for mechanical equilibrium~7! be-
comes

DP52
4p

d
ajcs

2 expS 2Nd

j D sin@f#N . ~36!

In practiceDP is fixed by the meniscus and condition~36!
gives all the admissible solutions at a given temperature~Fig.
9!. In particular, we see that for eachDP, there exists a
critical thicknessHc above which all films of thicknessH
.Hc are absolutely unstable. The critical thicknessHc de-
creases as the temperature increases because the amplit
the disjoining pressure decreases when the temperatur
creases. In practice we measure the temperatureT(N) at
which Hc5Nd. It is given by simply setting sin@f#N 521 in
Eq. ~36!. This gives an equation forT(N) of the form

DP5
4p

d
a@T~N!#j@T~N!#cs

2 expS 2Nd

j@T~N!# D ~37!

or, by including van der Waals interactions

DP5
4p

d
a@T~N!#j@T~N!#cs

2 expS 2Nd

j@T~N!# D1
A

6pN3d3 .

~38!

This equation allows us to calculate numericallyT(N)
2TNA by using our previous estimate ofaojocs

2/g, A, and
02170
is

e of
in-

jo . It gives the solid line in Fig. 8. The agreement with th
experimental points is qualitatively correct. Note that, w
typical values forA, van der Waals interactions are so sm
that ~37! and ~38! give almost the same result.

To say more would require further knowledge of the sp
cific mechanisms that lead to layer thinning transition
These mechanisms should obviously take into account
namic and kinetic processes~including, e.g., nucleation o
elementary dislocation loops!. All these phenomena are be
yond the scope of our paper. Let us note only that for
dislocation mechanism of layer thinning transitions, the a
vation energy is well known~see, e.g., Refs.@4,5,16#! and
reads for a homogeneous nucleation process:

Eact5
pE2

dDP
, ~39!

whereE is the line tension of an elementary edge dislocat
including ‘‘bulk’’ elastic deformation energyEb as well as a
surface contributionEs . In the framework of the usual elas
ticity, both contributions can be calculated. The former rea
@20#

Eb'AKB
d2

j
~40!

by taking j as an estimation for the core radius, while t
latter has been calculated in Ref.@21# and equals

Es'AgBd
d

H
. ~41!

For the natural values of the parameters,Eact is of the order
of 10kBT only very close to the temperaturesT(N) found
from Eqs.~34! and the fact that the nucleation is heterog
neous~loops nucleate on the side of the meniscus! should not
change this conclusion. Out of this regionEact@10kBT and

FIG. 9. Theoretical disjoining pressure as a function ofN. The
thick segments represent the allowed bands whereas dashed
represent thermodynamically unstable states. The horizontal
represents the pressureDP that is imposed by the meniscus. Th
points of intersection with the thick segments of the curve de
mine the spectrum of all the possible metastable solutions~super-
heated films!.
5-7
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therefore the probability for nucleating of an elementary d
location loop~even in the central part of the film whereB is
minimal! is completely negligible.

C. Contact angleum aboveTNA

The contact angleum between an overheated film and i
meniscus can be obtained by first solving Eq.~36! in @f#N .
The parameters chosen are the same as before:aojocs

2/g
57.431024 K21, A510kBT, jo50,8 nm with DP
5250 dyn/cm2 which is a typical value in our experiment
Knowing @f#N ~note that cos@f#N'1 whenT2TNA is larger
than 0.1 °C! we then calculatef (h) and um

2 using Eq.~32!
and Eq.~10!. The theoretical curvesum

2 (T) are displayed in
Fig. 6 for different values ofN. As before, each curve con
tains a part that has no physical meaning because the c
lation length is larger than the film thickness~dashed parts o
the curves, on the left of the maxima!. On the other hand
these curves predict that the contact angle is larger ab
TNA than below, passes through a maximum, and decre
at high temperature. These results are again in good qua
tive agreement with experiments~see Fig. 4!.

VI. CONCLUDING REMARKS

In fact, the question of layer thinning transitions is from
thermodynamical point of view equivalent to the question
the dependence of the smectic-A–nematic transition tem
peratureT(N) on the film thickness~or on N!.

There are two effects related to the existence of the
face. The first is purely geometrical. Indeed, surfaces br
translational and orientational invariances~the surface is a
specific plane that breaks the translational invariance w
the normal to the surface defines a specific direction
violates the rotational invariance!. These geometrical effect
lead to the finite size screening of fluctuations and are
sources for the pseudo-van der Waals interactions mentio
above. In addition, when the correlation length increases
becomes larger than the thickness of the film, the system
be considered as homogeneous~nonfluctuating! in the z di-
rection, so that a global large-scale description in this reg
would be closer to two-dimensional~2D! model instead of a
three-dimensional~3D! model. Therefore a 3D–2D cross
over should take place at temperatures that scale as

j

Nd
'1. ~42!

This relation defines a temperature interval@TNA
2dTco ,TNA1dTco# around TNA in which the previous
theory does not apply~dotted segment in Fig. 6!. The cross-
over temperature rangedTco scales as a function ofN like

dTco

TNA
aN21/n, ~43!

wheren is the exponent for the bulk correlation length. In t
mean field approximationn51/2, and thereforedTcoaN22.
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The second effect of the surfaces is related to the phys
modifications of the system at the surfaces due to, e.g., m
ing neighbors, or to the interactions with the environme
and so on. In the preceding section we have assumed
this effect was responsible for an increase of the sme
order parameter at the free surfaces and thatC5Cs at the
two surfaces irrespective of the temperature. But we can
other boundary conditions at the free surfaces. For exam
we can consider, as de Gennes did in Ref.@6#, thatC is not
constant at the free surfaces, but rather is given by minim
ing some surface free energy of the form

f s52hs@C~h/2!1C~2h/2!#. ~44!

This expression fixes the order parameter gradient rather
its value at the free surfaces. Similar calculations@6# in the
limit h@j@d/2p shows that temperaturesT(N) verify

DP5
4p

d

hs
2

a@T~N!#j@T~N!#
expS 2Nd

j@T~N!# D . ~45!

This result is similar as before and Eqs.~45! and ~37! give
the same scaling forT(N):

Nd

j@T~N!#
5C, ~46!

whereC is approximately constant within a logarithmic co
rection in Dp and T(N)2TNA . We emphasize thatC@1
and therefore the assumptionh@j is valid at T(N). Equa-
tion ~46! can also be rewritten in the form„@T(N)
2TNA#/TNA…a(1/N2). This law is not very well verified ex-
perimentally. A reasonable assumption would be to assu
that Eq.~46! is general and applies to other models. In th
case,

T~N!2TNA

TNA
a

1

N1/n , ~47!

where n is the critical exponent for the correlation leng
„j5jo@(T2TNA…/TNA#2n). The best fit of the experimenta
values~Fig. 8! givesn50.6960.05. This value is in agree
ment with that found in x-ray experiments„n50.6760.03
@22~a!# andn50.7060.03@22~b!#… or light scattering experi-
ments„n50.7260.05 @22~b!#… and coincides with the theo
retical valuen50.67 given by theXY model. We note how-
ever in Fig. 8 that the fit ofT(N) to a power law is very good
below 38 °C, but deviates at larger temperatures when
nematic-to-isotropic phase transition temperature is
proached~we measuredTIN540.4 °C). This observation is
perhaps the signature of some pretransitional effects clos
the N– I phase transition.
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